Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This study investigates the synergistic properties of 2D/1D ReS2-decorated LaFeO3 nanohybrids, presenting a unique approach to photocatalytic dye degradation. Through facile hydrothermal synthesis, we fabricated these nanohybrids with varying ReS2 loadings. Notably, the 5 wt% ReS2-LaFeO3 nanohybrid exhibited highly efficient visible-light-driven photocatalytic degradation of Congo red (CR) dye, achieving 82% degradation within 180 min. This enhanced performance can be attributed to synergistic effects arising from the unique 2D/1D architecture and the modified charge-transfer properties within the 2D/1D ReS2-LaFeO3 heterostructure. These findings demonstrate the potential of these multifunctional nanohybrids for applications in environmental remediation.more » « lessFree, publicly-accessible full text available March 1, 2026
-
This study investigates the underlying mechanisms of hydrogen peroxide (H₂O₂) sensing using a composite material of bismuth oxide and bismuth oxyselenide (Bi2OxSey). The antagonistic effect of tungsten (W)-doping on the electrochemical behavior was also examined. Undoped, 2 mol%, 4 mol%, and 6 mol% W-doped Bi2OxSey nanostructures were synthesized using a one-pot solution phase method involving selenium powder and hydrazine hydrate. W-doping induced a morphological transformation from nanosheets to spherical nanoparticles and amorphization of the bismuth oxyselenide phase. Electrochemical sensing measurements were conducted using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). H₂O₂ detection was achieved over a wide concentration range of 0.02 to 410 µM. In-depth CV analysis revealed the complex interplay of oxidation-reduction processes within the bismuth oxide and Bi2O2Se components of the composite material. W-doping exhibited an antagonistic effect, significantly reducing sensitivity. Among the studied samples, undoped Bi2OxSeγ demonstrated a high sensitivity of 83 μA μM⁻1 cm⁻2 for the CV oxidation peak at 0 V, while 6 mol% W-Bi2OxSey became completely insensitive to H2O2. Interestingly, DPV analysis showed a reversal of sensitivity trends with 2 and 4 mol% W-doping. The applicability of these samples for real-world analysis, including rainwater and urine, was also demonstrated.more » « lessFree, publicly-accessible full text available December 1, 2025
-
The development of high-performance hydrogen peroxide (H2O2) sensors is critical for various applications, including environmental monitoring, industrial processes, and biomedical diagnostics. This study explores the development of efficient and selective H2O2 sensors based on bismuth oxide/bismuth oxyselenide (Bi2O3/Bi2O2Se) nanocomposites. The Bi2O3/Bi2O2Se nanocomposites were synthesized using a simple solution-processing method at room temperature, resulting in a unique heterostructure with remarkable electrochemical characteristics for H2O2 detection. Characterization techniques, including powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM), confirmed the successful formation of the nanocomposites and their structural integrity. The synthesis time was varied to obtain the composites with different Se contents. The end goal was to obtain phase pure Bi2O2Se. Electrochemical measurements revealed that the Bi2O3/Bi2O2Se composite formed under optimal synthesis conditions displayed high sensitivity (75.7 µA µM−1 cm−2) and excellent selectivity towards H2O2 detection, along with a wide linear detection range (0–15 µM). The superior performance is attributed to the synergistic effect between Bi2O3 and Bi2O2Se, enhancing electron transfer and creating more active sites for H2O2 oxidation. These findings suggest that Bi2O3/Bi2O2Se nanocomposites hold great potential as advanced H2O2 sensors for practical applications.more » « less
An official website of the United States government
